Milyen magas az a fa, amely tetejének iránya álláshelyünkről nézve 450-os,5 m-rel hátrábbról 300-os szöget zár be a vízszintessel?
Figyelt kérdés
2016. márc. 21. 11:19
1/2 Arp Du válasza:
Két háromszöget rajzolsz, oldalaik:
a vízszintes a távolság, (hossza: x, a másodikban x+5),
a függőleges a fa magassága (y),
a harmadik oldal és a vízszintes közt a szög adott
45 fok az elsőben valószínűleg, 30 fok a másodikban.
Mindkét háromszögben a szög tangensét leírod,
x és y ismeretlen, ebből y-t kiszámolod,
a végén még hozzáadod azt, amilyen magasról nézed, (a magasságodat)
2/2 Arp Du válasza:
1.tg45°= y/x= 1
2.tg30°= y/(x+5)= 0,577
1.y=x
2.y=0,577*(y+5)
(1-0,577)*y= 2,885
0,423y= 2,885
y= 6,82(m)
y+1,6m= 8,42m
Kapcsolódó kérdések:
Minden jog fenntartva © 2025, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu
A weboldalon megjelenő anyagok nem minősülnek szerkesztői tartalomnak, előzetes ellenőrzésen nem esnek át, az üzemeltető véleményét nem tükrözik.
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!