Jól oldottam meg ezeket a feladatokat?
Kérlek segítsetek!
Nagyon nagy segítség lenne, ha a megoldást leírnátok!
Előre is köszi!
1, hány féle módon lehet 5 embert választani 6 nő és 6 férfi közül, ha
A, 2 nő és 3 férfi legyen benne?
B, legalább egy nő legyen benne?
C, benne legyen a legidősebb férfi?
2, 32 lapos magyar kártyából 8-at kiválasztunk.
A, Hány féleképpen lehet ezt megtenni?
B, hány féleképpen lehet úgy választani 8 lapot, hogy 6 zöld legyen?
C, hány féleképpen lehet úgy választani, hogy a 8 lapból legfeljebb 6 piros legyen?
1A jó
1B jó
1C a legidősebb férfi kitétel tulajdonképpen azt jelenti, hogy 6 nő és 5 férfi közül kell 5 embert választani, hiszen a 6. személy nem kérdéses, az konkrétan egy lehetőség.
2A simán 32 alatt a 8, hiszen egyszerűen 32 elemből választasz 8-at.
2B ennek a megoldását írtad a 2A-hoz
2C ezt komplementer eseménnyel érdemes megcsinálni. Hány olyan eset van, amikor nincs piros? pontosan egy piros van? pontosan 2 piros van? És ezek összegét kivonod az összes esetből.
Az 1B nem jó így! Ez lenne valójában:
(6 alat 1)·(6 alatt 4) + (6 alatt 2)·(6 alatt 3) + (6 alatt 3)·(6 alatt 2) + (6 alatt 4)·(6 alatt 1) + (6 alatt 5)
De lehet egyszerűbben is:
Legalább egy nő azt jelenti, hogy az összes lehetőségből kihagyjuk azokat, amiben nincs nő.
Összes: (12 alatt 5)
Csupa férfi: (6 alatt 5)
Vagyis (12 alatt 5) − (6 alatt 5)
Ezt a trükket nagyon sokszor lehet alkalmazni, érdemes gondolni rá, hogy hátha ilyen fordított hozzáállás ad egyszerűbb megoldást.
Az 1C-nél az első válaszban véletlen elírás van: nem 5 embert, hanem csak 4-et kell választani, úgy lesznek összesen 5-en a legidősebb férfival együtt.
Vagyis (11 alatt 4)·1
(A szorozva 1-et csk azért írtam oda, hogy jobban látszódjon, hogy a legidősebb férfi egyféleképpen lehet.)
2C)
Legfeljebb 6 piros azt jelenti, hogy nem lehet 7 vagy 8 piros, de bármi más lehet. (Szóval a #2 válasz nem igazán jó.)
8 piros: ez csak egyféleképpen lehet
7 piros és egy bármilyen más: (8 alatt 7)·(24 alatt 1) = 8·24
Ezeket kell kivonni abból, hogy 8 lapot hányféleképpen lehet tetszőlegesen kiválasztani, ami (32 alatt 8).
(32 alatt 8) − 1 − 8·24
Kapcsolódó kérdések:
Minden jog fenntartva © 2024, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!