Jól számoltam hogy kb 2^400milliomodikon már 100millió karaktertől nagyobb szám lesz?
Figyelt kérdés
valaki nem tudja pontosan hogy 2 hanyadik hatványától lesz egy szám 100 millió karakterből álló szám?
előre is köszönöm!
2011. máj. 7. 16:05
1/3 anonim válasza:
2^400milliomodikon már kb. 120millió karakterből áll.
2^332192807, 2^332192808 és 2^332192809 áll pontosan 100millió karakterből. Ha le akarod ellenőrizni, írd be őket ide: [link]
2/3 bongolo válasza:
A legelső 100 millió karakterből álló szám 10^99999999, az utolsó pedig eggyel kevesebb, mint 10^100millió.
Így:
10^100millió > 2^x ≥ 10^99999999
mindhárom oldal kettes alapú logaritmusát véve:
100millió * log2 10 > x ≥ 99999999 * log2 10
log2 10 = 3,321928094887362 (16 jegy pontossággal, 11 is elég lenne)
332192810 > x ≥ 332192807
3/3 A kérdező kommentje:
köszönöm :D
2011. máj. 10. 20:42
Kapcsolódó kérdések:
Minden jog fenntartva © 2024, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu
A weboldalon megjelenő anyagok nem minősülnek szerkesztői tartalomnak, előzetes ellenőrzésen nem esnek át, az üzemeltető véleményét nem tükrözik.
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!