Kezdőoldal » Közoktatás, tanfolyamok » Házifeladat kérdések » Hármas integrálás gömbi...

Hármas integrálás gömbi koordinátákból szögszámítása hogyan?

Figyelt kérdés

[link]

Ebben a feladatban hogyan jön ki a π/4 illetve a π/6?



jún. 2. 12:09
 1/2 anonim ***** válasza:
Felteszem, hogy a "v" a kúp félszöge szeretne lenni, ekkor egyszerűen egy sima tangenssel.
jún. 2. 13:54
Hasznos számodra ez a válasz?
 2/2 anonim ***** válasza:

Nem derül ki hogy milyen szögekre gondol, ezt jó lett volna ha ábrával megmutatja.

Megjegyzéseim:

-A gömbi koordinátákra való áttérés kétféleképp is paraméterezhető, a szakirodalom sem egységes ezen a téren.

-Mindig az adott paraméterezéshez kell kiszámolni a Jacobi-determinánst, ennek abszolútértéke kerül majd az integrálargumentum szorzójába.

-Ha megvan a paraméterezés, a szögparaméterek -mivel a feladat szimmetrikus- felezhetőek, negyedelhetőek, stb. az integrációs határokban.

-A feladat megoldható gömbi koordinátákra való áttérés nélkül is, azaz Descartes-féle koordinátarendszerben. Ilyenkor az integrációs határok (x, y, z) kifejezései lesznek. Az integrálás ilyenkor helyettesítéses integrállal oldható meg, lényegében igy jönnek be a szögfüggvények, és ugye helyettesítéses integrálásnál az integrációs határok is változnak, ezek már szögek lesznek.

Remélem segítettem, és rávezettelek hogy hogyan érdemes nekiesni egy ilyen példának :)

jún. 7. 21:16
Hasznos számodra ez a válasz?

Kapcsolódó kérdések:




Minden jog fenntartva © 2024, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu

A weboldalon megjelenő anyagok nem minősülnek szerkesztői tartalomnak, előzetes ellenőrzésen nem esnek át, az üzemeltető véleményét nem tükrözik.
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!