Kezdőoldal » Tudományok » Természettudományok » Deriválás, konkavítás igazolása?!

Deriválás, konkavítás igazolása?!

Figyelt kérdés
Van egy feladat,amelyben a függvény konkavítását kell bizonyítani,azt tudom hogy kell,az a kérdésem hogy ha pl másodrendű deriváltnál 0/0 eset jön ki és azt deriválom l'H (L'Hospital) szabály szerint és utána egy szám/0 jön ki akkor én annak megfelelően kiszámítom a határértéket és - vagy + végtelent írok a függvénytáblázatba,vagy olyant nem lehet,a függvény nem értelmezett abban a pontban? Remélem érthető voltam! :)

2016. febr. 14. 09:25
 1/2 anonim ***** válasza:
Ha leírod a példát, egyszerűbb választ adni.
2016. febr. 14. 11:29
Hasznos számodra ez a válasz?
 2/2 A kérdező kommentje:
f''(-2) =(-4*(-2)^2-10*(-2)-4)/(-2+2)^4 ez 0/0 deriválom l'H szerint és lesz (-8x-10)/4(x+2)^3 =(-8(-2)-10)/4(-2+2)^3 ez tovább egyenlő 6/0 ,itt tovább számoljak jobb és bal oldali határértéket?
2016. febr. 14. 12:10

Kapcsolódó kérdések:




Minden jog fenntartva © 2024, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu

A weboldalon megjelenő anyagok nem minősülnek szerkesztői tartalomnak, előzetes ellenőrzésen nem esnek át, az üzemeltető véleményét nem tükrözik.
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!