Hányféle út létezik?
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz1.png)
A Tao szerint csak egy igaz út van!
:-D Pedro
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz1.png)
Most két lehetőség van:
Az első, amikor egy pozíciót csak egyszer lehet igénybe venni.
A másik, amikor többször is vissza lehet térni ugyanabba a pozícióba. Ebben az esetben végtelen sok útvonal létezik.
@01:36
Ez a NxM-es mátrix tulajdonképpen egy gráf.
Egy séta szomszédos csúcsok és élek váltakozó sorozata.
Az önmagát nem metsző sétát útnak hívunk.
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz0.png)
fú ez elég nehéz feladat volna :D bejáróalgoritmust lehetne rá írni ami összeszámolja, de m és n függvényében megadni a képletet :S
az biztos hogy problémaredukcióval érdemes elkezdeni próbálkozni, megnézi 1*1es mátrixot, 1*2est, 1*3mast 2*3mast, szerencsére a 2*1es 3*1es 3*2es kizárható mert az mind1 hogy m*n vagy n*m. aztán kiokoskodni valami képletet rájuk, és megnézni hogy későbbi mátrixokra alkalmazva jó megoldást ad-e. 1*xes mátrix esetleg tekinthető speciális esetnek külön képlettel, meg lehet hogy számít az is hogy páros vagy páratlan sor/oszlop van-e.
"bejáróalgoritmust lehetne rá írni ami összeszámolja, de m és n függvényében megadni a képletet :S"
Bejáró algoritmus (saját készítésű szoftver) megvan, exponenciális futási idejű.
"1*xes mátrix esetleg ..."
1*x-es-ben 1 lehetséges út van, nincs lehetősége máshogy menni.
"az biztos hogy problémaredukcióval érdemes elkezdeni próbálkozni, megnézi ..."
Hogy alkalmazod rajta a problémaredukciót?
Ide írom a szoftver által generált kimenetet(több eset mint amit írtál példának,de azok is benne vannak):
= = = = = = = = = = =
1x1
[1,1]
1 db ut letezik.
= = = = = = = = = = =
1x2
[1,1] [1,2]
1 db ut letezik.
= = = = = = = = = = =
2x2
[1,1] [1,2] [2,1] [2,2]
[1,1] [1,2] [2,2]
[1,1] [2,1] [1,2] [2,2]
[1,1] [2,1] [2,2]
[1,1] [2,2]
5 db ut letezik.
= = = = = = = = = = =
1x3
[1,1] [1,2] [1,3]
1 db ut letezik.
= = = = = = = = = = =
2x3
[1,1] [1,2] [1,3] [2,2] [2,3]
[1,1] [1,2] [1,3] [2,3]
[1,1] [1,2] [2,1] [2,2] [1,3] [2,3]
[1,1] [1,2] [2,1] [2,2] [2,3]
[1,1] [1,2] [2,2] [1,3] [2,3]
[1,1] [1,2] [2,2] [2,3]
[1,1] [1,2] [2,3]
[1,1] [2,1] [1,2] [1,3] [2,2] [2,3]
[1,1] [2,1] [1,2] [1,3] [2,3]
[1,1] [2,1] [1,2] [2,2] [1,3] [2,3]
[1,1] [2,1] [1,2] [2,2] [2,3]
[1,1] [2,1] [1,2] [2,3]
[1,1] [2,1] [2,2] [1,2] [1,3] [2,3]
[1,1] [2,1] [2,2] [1,2] [2,3]
[1,1] [2,1] [2,2] [1,3] [1,2] [2,3]
[1,1] [2,1] [2,2] [1,3] [2,3]
[1,1] [2,1] [2,2] [2,3]
[1,1] [2,2] [1,2] [1,3] [2,3]
[1,1] [2,2] [1,2] [2,3]
[1,1] [2,2] [1,3] [1,2] [2,3]
[1,1] [2,2] [1,3] [2,3]
[1,1] [2,2] [2,1] [1,2] [1,3] [2,3]
[1,1] [2,2] [2,1] [1,2] [2,3]
[1,1] [2,2] [2,3]
24 db ut letezik.
= = = = = = = = = = =
3x3
[1,1] [1,2] [1,3] [2,2] [2,1] [3,1] [3,2] [2,3] [3,3]
[1,1] [1,2] [1,3] [2,2] [2,1] [3,1] [3,2] [3,3]
[1,1] [1,2] [1,3] [2,2] [2,1] [3,2] [2,3] [3,3]
[1,1] [1,2] [1,3] [2,2] [2,1] [3,2] [3,3]
[1,1] [1,2] [1,3] [2,2] [2,3] [3,2] [3,3]
[1,1] [1,2] [1,3] [2,2] [2,3] [3,3]
[1,1] [1,2] [1,3] [2,2] [3,1] [2,1] [3,2] [2,3] [3,3]
[1,1] [1,2] [1,3] [2,2] [3,1] [2,1] [3,2] [3,3]
[1,1] [1,2] [1,3] [2,2] [3,1] [3,2] [2,3] [3,3]
[1,1] [1,2] [1,3] [2,2] [3,1] [3,2] [3,3]
[1,1] [1,2] [1,3] [2,2] [3,2] [2,3] [3,3]
[1,1] [1,2] [1,3] [2,2] [3,2] [3,3]
[1,1] [1,2] [1,3] [2,2] [3,3]
[1,1] [1,2] [1,3] [2,3] [2,2] [2,1] [3,1] [3,2] [3,3]
[1,1] [1,2] [1,3] [2,3] [2,2] [2,1] [3,2] [3,3]
[1,1] [1,2] [1,3] [2,3] [2,2] [3,1] [2,1] [3,2] [3,3]
[1,1] [1,2] [1,3] [2,3] [2,2] [3,1] [3,2] [3,3]
[1,1] [1,2] [1,3] [2,3] [2,2] [3,2] [3,3]
[1,1] [1,2] [1,3] [2,3] [2,2] [3,3]
[1,1] [1,2] [1,3] [2,3] [3,2] [2,1] [2,2] [3,3]
[1,1] [1,2] [1,3] [2,3] [3,2] [2,1] [3,1] [2,2] [3,3]
[1,1] [1,2] [1,3] [2,3] [3,2] [2,2] [3,3]
[1,1] [1,2] [1,3] [2,3] [3,2] [3,1] [2,1] [2,2] [3,3]
[1,1] [1,2] [1,3] [2,3] [3,2] [3,1] [2,2] [3,3]
[1,1] [1,2] [1,3] [2,3] [3,2] [3,3]
[1,1] [1,2] [1,3] [2,3] [3,3]
[1,1] [1,2] [2,1] [2,2] [1,3] [2,3] [3,2] [3,3]
[1,1] [1,2] [2,1] [2,2] [1,3] [2,3] [3,3]
[1,1] [1,2] [2,1] [2,2] [2,3] [3,2] [3,3]
[1,1] [1,2] [2,1] [2,2] [2,3] [3,3]
[1,1] [1,2] [2,1] [2,2] [3,1] [3,2] [2,3] [3,3]
[1,1] [1,2] [2,1] [2,2] [3,1] [3,2] [3,3]
[1,1] [1,2] [2,1] [2,2] [3,2] [2,3] [3,3]
[1,1] [1,2] [2,1] [2,2] [3,2] [3,3]
[1,1] [1,2] [2,1] [2,2] [3,3]
[1,1] [1,2] [2,1] [3,1] [2,2] [1,3] [2,3] [3,2] [3,3]
[1,1] [1,2] [2,1] [3,1] [2,2] [1,3] [2,3] [3,3]
[1,1] [1,2] [2,1] [3,1] [2,2] [2,3] [3,2] [3,3]
[1,1] [1,2] [2,1] [3,1] [2,2] [2,3] [3,3]
[1,1] [1,2] [2,1] [3,1] [2,2] [3,2] [2,3] [3,3]
[1,1] [1,2] [2,1] [3,1] [2,2] [3,2] [3,3]
[1,1] [1,2] [2,1] [3,1] [2,2] [3,3]
[1,1] [1,2] [2,1] [3,1] [3,2] [2,2] [1,3] [2,3] [3,3]
[1,1] [1,2] [2,1] [3,1] [3,2] [2,2] [2,3] [3,3]
[1,1] [1,2] [2,1] [3,1] [3,2] [2,2] [3,3]
[1,1] [1,2] [2,1] [3,1] [3,2] [2,3] [1,3] [2,2] [3,3]
[1,1] [1,2] [2,1] [3,1] [3,2] [2,3] [2,2] [3,3]
[1,1] [1,2] [2,1] [3,1] [3,2] [2,3] [3,3]
[1,1] [1,2] [2,1] [3,1] [3,2] [3,3]
[1,1] [1,2] [2,1] [3,2] [2,2] [1,3] [2,3] [3,3]
[1,1] [1,2] [2,1] [3,2] [2,2] [2,3] [3,3]
[1,1] [1,2] [2,1] [3,2] [2,2] [3,3]
[1,1] [1,2] [2,1] [3,2] [2,3] [1,3] [2,2] [3,3]
[1,1] [1,2] [2,1] [3,2] [2,3] [2,2] [3,3]
[1,1] [1,2] [2,1] [3,2] [2,3] [3,3]
[1,1] [1,2] [2,1] [3,2] [3,1] [2,2] [1,3] [2,3] [3,3]
[1,1] [1,2] [2,1] [3,2] [3,1] [2,2] [2,3] [3,3]
[1,1] [1,2] [2,1] [3,2] [3,1] [2,2] [3,3]
[1,1] [1,2] [2,1] [3,2] [3,3]
[1,1] [1,2] [2,2] [1,3] [2,3] [3,2] [3,3]
[1,1] [1,2] [2,2] [1,3] [2,3] [3,3]
[1,1] [1,2] [2,2] [2,1] [3,1] [3,2] [2,3] [3,3]
[1,1] [1,2] [2,2] [2,1] [3,1] [3,2] [3,3]
[1,1] [1,2] [2,2] [2,1] [3,2] [2,3] [3,3]
[1,1] [1,2] [2,2] [2,1] [3,2] [3,3]
[1,1] [1,2] [2,2] [2,3] [3,2] [3,3]
[1,1] [1,2] [2,2] [2,3] [3,3]
[1,1] [1,2] [2,2] [3,1] [2,1] [3,2] [2,3] [3,3]
[1,1] [1,2] [2,2] [3,1] [2,1] [3,2] [3,3]
[1,1] [1,2] [2,2] [3,1] [3,2] [2,3] [3,3]
[1,1] [1,2] [2,2] [3,1] [3,2] [3,3]
[1,1] [1,2] [2,2] [3,2] [2,3] [3,3]
[1,1] [1,2] [2,2] [3,2] [3,3]
[1,1] [1,2] [2,2] [3,3]
[1,1] [1,2] [2,3] [1,3] [2,2] [2,1] [3,1] [3,2] [3,3]
[1,1] [1,2] [2,3] [1,3] [2,2] [2,1] [3,2] [3,3]
[1,1] [1,2] [2,3] [1,3] [2,2] [3,1] [2,1] [3,2] [3,3]
[1,1] [1,2] [2,3] [1,3] [2,2] [3,1] [3,2] [3,3]
[1,1] [1,2] [2,3] [1,3] [2,2] [3,2] [3,3]
[1,1] [1,2] [2,3] [1,3] [2,2] [3,3]
[1,1] [1,2] [2,3] [2,2] [2,1] [3,1] [3,2] [3,3]
[1,1] [1,2] [2,3] [2,2] [2,1] [3,2] [3,3]
[1,1] [1,2] [2,3] [2,2] [3,1] [2,1] [3,2] [3,3]
[1,1] [1,2] [2,3] [2,2] [3,1] [3,2] [3,3]
[1,1] [1,2] [2,3] [2,2] [3,2] [3,3]
[1,1] [1,2] [2,3] [2,2] [3,3]
[1,1] [1,2] [2,3] [3,2] [2,1] [2,2] [3,3]
[1,1] [1,2] [2,3] [3,2] [2,1] [3,1] [2,2] [3,3]
[1,1] [1,2] [2,3] [3,2] [2,2] [3,3]
[1,1] [1,2] [2,3] [3,2] [3,1] [2,1] [2,2] [3,3]
[1,1] [1,2] [2,3] [3,2] [3,1] [2,2] [3,3]
[1,1] [1,2] [2,3] [3,2] [3,3]
[1,1] [1,2] [2,3] [3,3]
[1,1] [2,1] [1,2] [1,3] [2,2] [2,3] [3,2] [3,3]
[1,1] [2,1] [1,2] [1,3] [2,2] [2,3] [3,3]
[1,1] [2,1] [1,2] [1,3] [2,2] [3,1] [3,2] [2,3] [3,3]
[1,1] [2,1] [1,2] [1,3] [2,2] [3,1] [3,2] [3,3]
[1,1] [2,1] [1,2] [1,3] [2,2] [3,2] [2,3] [3,3]
[1,1] [2,1] [1,2] [1,3] [2,2] [3,2] [3,3]
[1,1] [2,1] [1,2] [1,3] [2,2] [3,3]
[1,1] [2,1] [1,2] [1,3] [2,3] [2,2] [3,1] [3,2] [3,3]
[1,1] [2,1] [1,2] [1,3] [2,3] [2,2] [3,2] [3,3]
[1,1] [2,1] [1,2] [1,3] [2,3] [2,2] [3,3]
[1,1] [2,1] [1,2] [1,3] [2,3] [3,2] [2,2] [3,3]
[1,1] [2,1] [1,2] [1,3] [2,3] [3,2] [3,1] [2,2] [3,3]
[1,1] [2,1] [1,2] [1,3] [2,3] [3,2] [3,3]
[1,1] [2,1] [1,2] [1,3] [2,3] [3,3]
[1,1] [2,1] [1,2] [2,2] [1,3] [2,3] [3,2] [3,3]
[1,1] [2,1] [1,2] [2,2] [1,3] [2,3] [3,3]
[1,1] [2,1] [1,2] [2,2] [2,3] [3,2] [3,3]
[1,1] [2,1] [1,2] [2,2] [2,3] [3,3]
[1,1] [2,1] [1,2] [2,2] [3,1] [3,2] [2,3] [3,3]
[1,1] [2,1] [1,2] [2,2] [3,1] [3,2] [3,3]
[1,1] [2,1] [1,2] [2,2] [3,2] [2,3] [3,3]
[1,1] [2,1] [1,2] [2,2] [3,2] [3,3]
[1,1] [2,1] [1,2] [2,2] [3,3]
[1,1] [2,1] [1,2] [2,3] [1,3] [2,2] [3,1] [3,2] [3,3]
[1,1] [2,1] [1,2] [2,3] [1,3] [2,2] [3,2] [3,3]
[1,1] [2,1] [1,2] [2,3] [1,3] [2,2] [3,3]
[1,1] [2,1] [1,2] [2,3] [2,2] [3,1] [3,2] [3,3]
[1,1] [2,1] [1,2] [2,3] [2,2] [3,2] [3,3]
[1,1] [2,1] [1,2] [2,3] [2,2] [3,3]
[1,1] [2,1] [1,2] [2,3] [3,2] [2,2] [3,3]
[1,1] [2,1] [1,2] [2,3] [3,2] [3,1] [2,2] [3,3]
[1,1] [2,1] [1,2] [2,3] [3,2] [3,3]
[1,1] [2,1] [1,2] [2,3] [3,3]
[1,1] [2,1] [2,2] [1,2] [1,3] [2,3] [3,2] [3,3]
[1,1] [2,1] [2,2] [1,2] [1,3] [2,3] [3,3]
[1,1] [2,1] [2,2] [1,2] [2,3] [3,2] [3,3]
[1,1] [2,1] [2,2] [1,2] [2,3] [3,3]
[1,1] [2,1] [2,2] [1,3] [1,2] [2,3] [3,2] [3,3]
[1,1] [2,1] [2,2] [1,3] [1,2] [2,3] [3,3]
[1,1] [2,1] [2,2] [1,3] [2,3] [3,2] [3,3]
[1,1] [2,1] [2,2] [1,3] [2,3] [3,3]
[1,1] [2,1] [2,2] [2,3] [3,2] [3,3]
[1,1] [2,1] [2,2] [2,3] [3,3]
[1,1] [2,1] [2,2] [3,1] [3,2] [2,3] [3,3]
[1,1] [2,1] [2,2] [3,1] [3,2] [3,3]
[1,1] [2,1] [2,2] [3,2] [2,3] [3,3]
[1,1] [2,1] [2,2] [3,2] [3,3]
[1,1] [2,1] [2,2] [3,3]
[1,1] [2,1] [3,1] [2,2] [1,2] [1,3] [2,3] [3,2] [3,3]
[1,1] [2,1] [3,1] [2,2] [1,2] [1,3] [2,3] [3,3]
[1,1] [2,1] [3,1] [2,2] [1,2] [2,3] [3,2] [3,3]
[1,1] [2,1] [3,1] [2,2] [1,2] [2,3] [3,3]
[1,1] [2,1] [3,1] [2,2] [1,3] [1,2] [2,3] [3,2] [3,3]
[1,1] [2,1] [3,1] [2,2] [1,3] [1,2] [2,3] [3,3]
[1,1] [2,1] [3,1] [2,2] [1,3] [2,3] [3,2] [3,3]
[1,1] [2,1] [3,1] [2,2] [1,3] [2,3] [3,3]
[1,1] [2,1] [3,1] [2,2] [2,3] [3,2] [3,3]
[1,1] [2,1] [3,1] [2,2] [2,3] [3,3]
[1,1] [2,1] [3,1] [2,2] [3,2] [2,3] [3,3]
[1,1] [2,1] [3,1] [2,2] [3,2] [3,3]
[1,1] [2,1] [3,1] [2,2] [3,3]
[1,1] [2,1] [3,1] [3,2] [2,2] [1,2] [1,3] [2,3] [3,3]
[1,1] [2,1] [3,1] [3,2] [2,2] [1,2] [2,3] [3,3]
[1,1] [2,1] [3,1] [3,2] [2,2] [1,3] [1,2] [2,3] [3,3]
[1,1] [2,1] [3,1] [3,2] [2,2] [1,3] [2,3] [3,3]
[1,1] [2,1] [3,1] [3,2] [2,2] [2,3] [3,3]
[1,1] [2,1] [3,1] [3,2] [2,2] [3,3]
[1,1] [2,1] [3,1] [3,2] [2,3] [1,2] [1,3] [2,2] [3,3]
[1,1] [2,1] [3,1] [3,2] [2,3] [1,2] [2,2] [3,3]
[1,1] [2,1] [3,1] [3,2] [2,3] [1,3] [1,2] [2,2] [3,3]
[1,1] [2,1] [3,1] [3,2] [2,3] [1,3] [2,2] [3,3]
[1,1] [2,1] [3,1] [3,2] [2,3] [2,2] [3,3]
[1,1] [2,1] [3,1] [3,2] [2,3] [3,3]
[1,1] [2,1] [3,1] [3,2] [3,3]
[1,1] [2,1] [3,2] [2,2] [1,2] [1,3] [2,3] [3,3]
[1,1] [2,1] [3,2] [2,2] [1,2] [2,3] [3,3]
[1,1] [2,1] [3,2] [2,2] [1,3] [1,2] [2,3] [3,3]
[1,1] [2,1] [3,2] [2,2] [1,3] [2,3] [3,3]
[1,1] [2,1] [3,2] [2,2] [2,3] [3,3]
[1,1] [2,1] [3,2] [2,2] [3,3]
[1,1] [2,1] [3,2] [2,3] [1,2] [1,3] [2,2] [3,3]
[1,1] [2,1] [3,2] [2,3] [1,2] [2,2] [3,3]
[1,1] [2,1] [3,2] [2,3] [1,3] [1,2] [2,2] [3,3]
[1,1] [2,1] [3,2] [2,3] [1,3] [2,2] [3,3]
[1,1] [2,1] [3,2] [2,3] [2,2] [3,3]
[1,1] [2,1] [3,2] [2,3] [3,3]
[1,1] [2,1] [3,2] [3,1] [2,2] [1,2] [1,3] [2,3] [3,3]
[1,1] [2,1] [3,2] [3,1] [2,2] [1,2] [2,3] [3,3]
[1,1] [2,1] [3,2] [3,1] [2,2] [1,3] [1,2] [2,3] [3,3]
[1,1] [2,1] [3,2] [3,1] [2,2] [1,3] [2,3] [3,3]
[1,1] [2,1] [3,2] [3,1] [2,2] [2,3] [3,3]
[1,1] [2,1] [3,2] [3,1] [2,2] [3,3]
[1,1] [2,1] [3,2] [3,3]
[1,1] [2,2] [1,2] [1,3] [2,3] [3,2] [3,3]
[1,1] [2,2] [1,2] [1,3] [2,3] [3,3]
[1,1] [2,2] [1,2] [2,1] [3,1] [3,2] [2,3] [3,3]
[1,1] [2,2] [1,2] [2,1] [3,1] [3,2] [3,3]
[1,1] [2,2] [1,2] [2,1] [3,2] [2,3] [3,3]
[1,1] [2,2] [1,2] [2,1] [3,2] [3,3]
[1,1] [2,2] [1,2] [2,3] [3,2] [3,3]
[1,1] [2,2] [1,2] [2,3] [3,3]
[1,1] [2,2] [1,3] [1,2] [2,1] [3,1] [3,2] [2,3] [3,3]
[1,1] [2,2] [1,3] [1,2] [2,1] [3,1] [3,2] [3,3]
[1,1] [2,2] [1,3] [1,2] [2,1] [3,2] [2,3] [3,3]
[1,1] [2,2] [1,3] [1,2] [2,1] [3,2] [3,3]
[1,1] [2,2] [1,3] [1,2] [2,3] [3,2] [3,3]
[1,1] [2,2] [1,3] [1,2] [2,3] [3,3]
[1,1] [2,2] [1,3] [2,3] [1,2] [2,1] [3,1] [3,2] [3,3]
[1,1] [2,2] [1,3] [2,3] [1,2] [2,1] [3,2] [3,3]
[1,1] [2,2] [1,3] [2,3] [3,2] [3,3]
[1,1] [2,2] [1,3] [2,3] [3,3]
[1,1] [2,2] [2,1] [1,2] [1,3] [2,3] [3,2] [3,3]
[1,1] [2,2] [2,1] [1,2] [1,3] [2,3] [3,3]
[1,1] [2,2] [2,1] [1,2] [2,3] [3,2] [3,3]
[1,1] [2,2] [2,1] [1,2] [2,3] [3,3]
[1,1] [2,2] [2,1] [3,1] [3,2] [2,3] [3,3]
[1,1] [2,2] [2,1] [3,1] [3,2] [3,3]
[1,1] [2,2] [2,1] [3,2] [2,3] [3,3]
[1,1] [2,2] [2,1] [3,2] [3,3]
[1,1] [2,2] [2,3] [1,2] [2,1] [3,1] [3,2] [3,3]
[1,1] [2,2] [2,3] [1,2] [2,1] [3,2] [3,3]
[1,1] [2,2] [2,3] [1,3] [1,2] [2,1] [3,1] [3,2] [3,3]
[1,1] [2,2] [2,3] [1,3] [1,2] [2,1] [3,2] [3,3]
[1,1] [2,2] [2,3] [3,2] [3,3]
[1,1] [2,2] [2,3] [3,3]
[1,1] [2,2] [3,1] [2,1] [1,2] [1,3] [2,3] [3,2] [3,3]
[1,1] [2,2] [3,1] [2,1] [1,2] [1,3] [2,3] [3,3]
[1,1] [2,2] [3,1] [2,1] [1,2] [2,3] [3,2] [3,3]
[1,1] [2,2] [3,1] [2,1] [1,2] [2,3] [3,3]
[1,1] [2,2] [3,1] [2,1] [3,2] [2,3] [3,3]
[1,1] [2,2] [3,1] [2,1] [3,2] [3,3]
[1,1] [2,2] [3,1] [3,2] [2,1] [1,2] [1,3] [2,3] [3,3]
[1,1] [2,2] [3,1] [3,2] [2,1] [1,2] [2,3] [3,3]
[1,1] [2,2] [3,1] [3,2] [2,3] [3,3]
[1,1] [2,2] [3,1] [3,2] [3,3]
[1,1] [2,2] [3,2] [2,1] [1,2] [1,3] [2,3] [3,3]
[1,1] [2,2] [3,2] [2,1] [1,2] [2,3] [3,3]
[1,1] [2,2] [3,2] [2,3] [3,3]
[1,1] [2,2] [3,2] [3,1] [2,1] [1,2] [1,3] [2,3] [3,3]
[1,1] [2,2] [3,2] [3,1] [2,1] [1,2] [2,3] [3,3]
[1,1] [2,2] [3,2] [3,3]
[1,1] [2,2] [3,3]
235 db ut letezik.
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz0.png)
uhh a kereszt irányt nem is láttam, azt nem kéne kivenni? :D csodálkoztam hogy hogy jött ki ilyen sok lépés 3*3ra.
de erre gondoltam jah, hogy kis mátrixokra megnézni, átgondolni azokat hogyan járja be, és úgy. de 200+ utat nehéz átlátni, ezért lenne érdemes sztem a keresztlépést kivenni. ha muszáj a keresztlépés, akkor valami alapján próbáld kategóriákra osztani a bejárási utakat, vagy al-részekre, nemtudom.
jah igen az 1xi-s mátrixot nem gondoltam át csak leírtam :D
ajánlottam volna a genetikus algoritmust is, hogy azzal gyárts képleteket, de ha már 3x3mas mátrixra ilyen nagy számot kell találnia, akkor valszeg az felejtős.
Kivettem a kereszt irányokat,lényegesen kevesebb út van.
Mindössze ennyi:
= = = = = = = = = = =
1x1
[1,1]
1 db ut letezik.
= = = = = = = = = = =
1x2
[1,1] [1,2]
1 db ut letezik.
= = = = = = = = = = =
2x2
[1,1] [1,2] [2,2]
[1,1] [2,1] [2,2]
2 db ut letezik.
= = = = = = = = = = =
1x3
[1,1] [1,2] [1,3]
1 db ut letezik.
= = = = = = = = = = =
2x3
[1,1] [1,2] [1,3] [2,3]
[1,1] [1,2] [2,2] [2,3]
[1,1] [2,1] [2,2] [1,2] [1,3] [2,3]
[1,1] [2,1] [2,2] [2,3]
4 db ut letezik.
= = = = = = = = = = =
3x3
[1,1] [1,2] [1,3] [2,3] [2,2] [2,1] [3,1] [3,2] [3,3]
[1,1] [1,2] [1,3] [2,3] [2,2] [3,2] [3,3]
[1,1] [1,2] [1,3] [2,3] [3,3]
[1,1] [1,2] [2,2] [2,1] [3,1] [3,2] [3,3]
[1,1] [1,2] [2,2] [2,3] [3,3]
[1,1] [1,2] [2,2] [3,2] [3,3]
[1,1] [2,1] [2,2] [1,2] [1,3] [2,3] [3,3]
[1,1] [2,1] [2,2] [2,3] [3,3]
[1,1] [2,1] [2,2] [3,2] [3,3]
[1,1] [2,1] [3,1] [3,2] [2,2] [1,2] [1,3] [2,3] [3,3]
[1,1] [2,1] [3,1] [3,2] [2,2] [2,3] [3,3]
[1,1] [2,1] [3,1] [3,2] [3,3]
12 db ut letezik.
Erre valami konkrét ötlet?
Most csak kereszt irányokba mehet, beraktam több mátrixot, jelentősen kevesebb út van így is.
= = = = = = = = = = =
1x1
[1,1]
1 db ut letezik.
= = = = = = = = = = =
1x2
0 db ut letezik.
= = = = = = = = = = =
2x2
[1,1] [2,2]
1 db ut letezik.
= = = = = = = = = = =
1x3
0 db ut letezik.
= = = = = = = = = = =
2x3
0 db ut letezik.
= = = = = = = = = = =
3x3
[1,1] [2,2] [3,3]
1 db ut letezik.
= = = = = = = = = = =
3x4
0 db ut letezik.
= = = = = = = = = = =
4x4
[1,1] [2,2] [1,3] [2,4] [3,3] [4,4]
1 db ut letezik.
= = = = = = = = = = =
2x5
0 db ut letezik.
= = = = = = = = = = =
3x5
[1,1] [2,2] [1,3] [2,4] [3,5]
1 db ut letezik.
= = = = = = = = = = =
4x5
0 db ut letezik.
= = = = = = = = = = =
5x5
[1,1] [2,2] [1,3] [2,4] [3,3] [4,2] [5,3] [4,4] [5,5]
1 db ut letezik.
= = = = = = = = = = =
3x6
0 db ut letezik.
= = = = = = = = = = =
5x6
0 db ut letezik.
= = = = = = = = = = =
6x6
[1,1] [2,2] [1,3] [2,4] [1,5] [2,6] [3,5] [4,4] [3,3] [4,2] [5,1] [6,2] [5,3] [6,4] [5,5] [6,6]
1 db ut letezik.
= = = = = = = = = = =
7x7
[1,1] [2,2] [1,3] [2,4] [1,5] [2,6] [3,5] [4,4] [3,3] [4,2] [5,1] [6,2] [5,3] [6,4] [5,5] [4,6] [5,7] [6,6] [7,7]
1 db ut letezik.
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz0.png)
nézd meg a 3x4est, 4x4est, 4x5öst, 5x5öst, 5x6ost is, csak hogy mennyi az eredmény, és megpróbálni egy képletet találni aminél kijön m és n behelyettesítésével a jó eredmény, de külön képletet keress a 2x2es 4x4eshez, 2x3mas 4x5öshöz, 3x4es 5x6oshoz, 3x3as 5x5öshöz szerintem. bár lehet hogy 2x2 3x3 4x4 5x5höz jó lesz végül ugyanaz, nemtudom.
3x3mas meg 2x3mas az nem egy kategória mert a 2x3masba nem lehet mindig szimmetrikusan ugyanazt megcsinálni pl, 3x3masnál látszik hogy az ugyanolyan hosszú bejárások azok párosok, szerintem 5x5ös is ezért kb ugyanaz az eset.
ajánlottam a genetikus algoritmust, esetleg ha van kedved megpróbálhatod, a lényeg az volna, hogy pl kitűzöd magadnak a páros*páratlan mátrixokat, szal 2x3, 2x5, 4x5 (4x3 az 3x4nek felel meg, szal az páratlan*páros igazából), és tenyésztesz egy populációt, amiben felépítesz képleteket véletlenszerűen, pl ilyen elemei lehetnének: m*n, m+n, (m-1)*n, (m-1)^n, m^(n-1)+n^2, satöbbi
az első körben megnéznéd hogy melyik képlet működik 2x3as mátrixra, magyarul pl 2*3, 2+3, (2-1)*3 egyenlő-e az általad már elkészített algoritmusod 2*3as mátrixra adott eredményénvel. ha egy függvény egyenlő volna, akkor a jósága az 1es lenne. aztán megnézed hogy a 2*5ös mátrixra jó eredményt ad-e? ha igen akkor 2es jóság, és így tovább.
ezután a rossz eredményeket elvetnéd, helyükre generálnál teljesen új képleteket, vagy változtatnád a működő, már meglévő képleteket.
mégtöbb info a GA-ról:
UI: lehet írtam megint pár hülyeséget, ez azért van, mert nem gondoltam ebbe igazán bele, csak próbálok 5leteket adni :D
A @19:05-nél eltoltam egy logikai értékadás sort is kicementeltem véletlen a 7x7-est ide nem írom mert nem akarom terhelni az oldalt mert hosszú lenne.
= = = = = = = = = = =
1x1
[1,1]
1 db ut letezik.
= = = = = = = = = = =
1x2
0 db ut letezik.
= = = = = = = = = = =
2x2
[1,1] [2,2]
1 db ut letezik.
= = = = = = = = = = =
1x3
0 db ut letezik.
= = = = = = = = = = =
2x3
0 db ut letezik.
= = = = = = = = = = =
3x3
[1,1] [2,2] [3,3]
1 db ut letezik.
= = = = = = = = = = =
3x4
0 db ut letezik.
= = = = = = = = = = =
4x4
[1,1] [2,2] [1,3] [2,4] [3,3] [4,4]
[1,1] [2,2] [3,1] [4,2] [3,3] [4,4]
[1,1] [2,2] [3,3] [4,4]
3 db ut letezik.
= = = = = = = = = = =
2x5
0 db ut letezik.
= = = = = = = = = = =
3x5
[1,1] [2,2] [1,3] [2,4] [3,5]
[1,1] [2,2] [3,3] [2,4] [3,5]
2 db ut letezik.
= = = = = = = = = = =
4x5
0 db ut letezik.
= = = = = = = = = = =
5x5
[1,1] [2,2] [1,3] [2,4] [3,3] [4,2] [5,3] [4,4] [5,5]
[1,1] [2,2] [1,3] [2,4] [3,3] [4,4] [5,5]
[1,1] [2,2] [1,3] [2,4] [3,5] [4,4] [5,5]
[1,1] [2,2] [3,1] [4,2] [3,3] [2,4] [3,5] [4,4] [5,5]
[1,1] [2,2] [3,1] [4,2] [3,3] [4,4] [5,5]
[1,1] [2,2] [3,1] [4,2] [5,3] [4,4] [5,5]
[1,1] [2,2] [3,3] [2,4] [3,5] [4,4] [5,5]
[1,1] [2,2] [3,3] [4,2] [5,3] [4,4] [5,5]
[1,1] [2,2] [3,3] [4,4] [5,5]
9 db ut letezik.
= = = = = = = = = = =
3x6
0 db ut letezik.
= = = = = = = = = = =
5x6
0 db ut letezik.
= = = = = = = = = = =
6x6
[1,1] [2,2] [1,3] [2,4] [1,5] [2,6] [3,5] [4,4] [3,3] [4,2] [5,1] [6,2] [5,3] [6,4] [5,5] [6,6]
[1,1] [2,2] [1,3] [2,4] [1,5] [2,6] [3,5] [4,4] [3,3] [4,2] [5,3] [6,4] [5,5] [6,6]
[1,1] [2,2] [1,3] [2,4] [1,5] [2,6] [3,5] [4,4] [5,3] [6,4] [5,5] [6,6]
[1,1] [2,2] [1,3] [2,4] [1,5] [2,6] [3,5] [4,4] [5,5] [6,6]
[1,1] [2,2] [1,3] [2,4] [1,5] [2,6] [3,5] [4,6] [5,5] [6,6]
[1,1] [2,2] [1,3] [2,4] [3,3] [4,2] [5,1] [6,2] [5,3] [4,4] [3,5] [4,6] [5,5] [6,6]
[1,1] [2,2] [1,3] [2,4] [3,3] [4,2] [5,1] [6,2] [5,3] [4,4] [5,5] [6,6]
[1,1] [2,2] [1,3] [2,4] [3,3] [4,2] [5,1] [6,2] [5,3] [6,4] [5,5] [6,6]
[1,1] [2,2] [1,3] [2,4] [3,3] [4,2] [5,3] [4,4] [3,5] [4,6] [5,5] [6,6]
[1,1] [2,2] [1,3] [2,4] [3,3] [4,2] [5,3] [4,4] [5,5] [6,6]
[1,1] [2,2] [1,3] [2,4] [3,3] [4,2] [5,3] [6,4] [5,5] [6,6]
[1,1] [2,2] [1,3] [2,4] [3,3] [4,4] [3,5] [4,6] [5,5] [6,6]
[1,1] [2,2] [1,3] [2,4] [3,3] [4,4] [5,3] [6,4] [5,5] [6,6]
[1,1] [2,2] [1,3] [2,4] [3,3] [4,4] [5,5] [6,6]
[1,1] [2,2] [1,3] [2,4] [3,5] [4,4] [3,3] [4,2] [5,1] [6,2] [5,3] [6,4] [5,5] [6,6]
[1,1] [2,2] [1,3] [2,4] [3,5] [4,4] [3,3] [4,2] [5,3] [6,4] [5,5] [6,6]
[1,1] [2,2] [1,3] [2,4] [3,5] [4,4] [5,3] [6,4] [5,5] [6,6]
[1,1] [2,2] [1,3] [2,4] [3,5] [4,4] [5,5] [6,6]
[1,1] [2,2] [1,3] [2,4] [3,5] [4,6] [5,5] [6,6]
[1,1] [2,2] [3,1] [4,2] [3,3] [2,4] [1,5] [2,6] [3,5] [4,4] [5,3] [6,4] [5,5] [6,6]
[1,1] [2,2] [3,1] [4,2] [3,3] [2,4] [1,5] [2,6] [3,5] [4,4] [5,5] [6,6]
[1,1] [2,2] [3,1] [4,2] [3,3] [2,4] [1,5] [2,6] [3,5] [4,6] [5,5] [6,6]
[1,1] [2,2] [3,1] [4,2] [3,3] [2,4] [3,5] [4,4] [5,3] [6,4] [5,5] [6,6]
[1,1] [2,2] [3,1] [4,2] [3,3] [2,4] [3,5] [4,4] [5,5] [6,6]
[1,1] [2,2] [3,1] [4,2] [3,3] [2,4] [3,5] [4,6] [5,5] [6,6]
[1,1] [2,2] [3,1] [4,2] [3,3] [4,4] [3,5] [4,6] [5,5] [6,6]
[1,1] [2,2] [3,1] [4,2] [3,3] [4,4] [5,3] [6,4] [5,5] [6,6]
[1,1] [2,2] [3,1] [4,2] [3,3] [4,4] [5,5] [6,6]
[1,1] [2,2] [3,1] [4,2] [5,1] [6,2] [5,3] [4,4] [3,3] [2,4] [1,5] [2,6] [3,5] [4,6] [5,5] [6,6]
[1,1] [2,2] [3,1] [4,2] [5,1] [6,2] [5,3] [4,4] [3,3] [2,4] [3,5] [4,6] [5,5] [6,6]
[1,1] [2,2] [3,1] [4,2] [5,1] [6,2] [5,3] [4,4] [3,5] [4,6] [5,5] [6,6]
[1,1] [2,2] [3,1] [4,2] [5,1] [6,2] [5,3] [4,4] [5,5] [6,6]
[1,1] [2,2] [3,1] [4,2] [5,1] [6,2] [5,3] [6,4] [5,5] [6,6]
[1,1] [2,2] [3,1] [4,2] [5,3] [4,4] [3,3] [2,4] [1,5] [2,6] [3,5] [4,6] [5,5] [6,6]
[1,1] [2,2] [3,1] [4,2] [5,3] [4,4] [3,3] [2,4] [3,5] [4,6] [5,5] [6,6]
[1,1] [2,2] [3,1] [4,2] [5,3] [4,4] [3,5] [4,6] [5,5] [6,6]
[1,1] [2,2] [3,1] [4,2] [5,3] [4,4] [5,5] [6,6]
[1,1] [2,2] [3,1] [4,2] [5,3] [6,4] [5,5] [6,6]
[1,1] [2,2] [3,3] [2,4] [1,5] [2,6] [3,5] [4,4] [5,3] [6,4] [5,5] [6,6]
[1,1] [2,2] [3,3] [2,4] [1,5] [2,6] [3,5] [4,4] [5,5] [6,6]
[1,1] [2,2] [3,3] [2,4] [1,5] [2,6] [3,5] [4,6] [5,5] [6,6]
[1,1] [2,2] [3,3] [2,4] [3,5] [4,4] [5,3] [6,4] [5,5] [6,6]
[1,1] [2,2] [3,3] [2,4] [3,5] [4,4] [5,5] [6,6]
[1,1] [2,2] [3,3] [2,4] [3,5] [4,6] [5,5] [6,6]
[1,1] [2,2] [3,3] [4,2] [5,1] [6,2] [5,3] [4,4] [3,5] [4,6] [5,5] [6,6]
[1,1] [2,2] [3,3] [4,2] [5,1] [6,2] [5,3] [4,4] [5,5] [6,6]
[1,1] [2,2] [3,3] [4,2] [5,1] [6,2] [5,3] [6,4] [5,5] [6,6]
[1,1] [2,2] [3,3] [4,2] [5,3] [4,4] [3,5] [4,6] [5,5] [6,6]
[1,1] [2,2] [3,3] [4,2] [5,3] [4,4] [5,5] [6,6]
[1,1] [2,2] [3,3] [4,2] [5,3] [6,4] [5,5] [6,6]
[1,1] [2,2] [3,3] [4,4] [3,5] [4,6] [5,5] [6,6]
[1,1] [2,2] [3,3] [4,4] [5,3] [6,4] [5,5] [6,6]
[1,1] [2,2] [3,3] [4,4] [5,5] [6,6]
53 db ut letezik.
Kapcsolódó kérdések:
Minden jog fenntartva © 2025, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!