Kezdőoldal » Tudományok » Természettudományok » Hogyan kell levezetni ezt az...

Hogyan kell levezetni ezt az osszefuggest? (v = vo + at) es hogyan kell a négyzetes úttörvenyt levezetni?

Figyelt kérdés

2023. dec. 30. 20:12
 1/10 anonim ***** válasza:
53%

Egyszerű integrálással adódik:


s=∫_0^t (v_0+at') dt'=[v_0t'+(1/2)at'^2]_0^t=v_0t+(1/2)at^2

2023. dec. 30. 20:58
Hasznos számodra ez a válasz?
 2/10 steven95 ***** válasza:
66%

A függvény alatti területtel. Milyen függvény?

I. gyorsulás-idő függvény alatti terület a sebességhez

II. sebesség idő-idő függvény alatti terület a megtett úthoz


Magasabb matematikában ezt határozott integrálásnak nevezik, amely a függvény alatti területek meghatározására alkottak meg. Szerencsére a fenti esetben olyan egyszerű függvények vannak, hogy egyszerű geometriai ismeretek is elegendőek a területek meghatározásához.


I. Állandó gyorsulás esetén a gyorsulás-idő grafikon vízszintes. t időpillanatig a függvény alatti terület egy téglalap, melynek területe a*t. De ez csak a sebesség megváltozása, volt egy kezdeti sebesség is, így v = v0 + a*t


II. Az I. feladatban kiszámoltuk, hogy hogy néz ki a sebesség-idő függvény. Ez egy lineáris egyenes a v0 magasságban indul, melynek meredeksége = a. t időpillanatig a grafikon alatti terület egy trapéz, amely felbontható egy v0 magasságú téglalapra és egy a*t magasságú háromszögre. A téglalap területet: v0*t A háromszög területe a*t*t/2 =a/2*t^2. És itt is volt kezdeti megtett út. Tehát:

s = s0 + v0*t + a/2*t^2


Már csak azt kell belátni, hogy miért is a függvény alatti terület a megoldás kulcsa. Ha nem folytonos és girbe-gurba függvényekre gondolunk, hanem például lépcsős függvényre, azaz szakaszonként vízszintes elemekből álló grafikonra, ez segít a magyarázatban.


___ _

__ ____ _____

_ _____

----------------------->t


PL:

t1 ideig v1 állandó a sebesség

t2 ideig v2 állandó a sebesség

t3 ideig v3 állandó a sebesség

...stb.


Akkor mi a megtett út? Mivel az út megváltozása v*t ígyhát delta s = v1*t1 + v2*t2 + v3*t3 +... azaz a változások összeadódnak. ÉS EZ MI? A sebesség-idő függvény alatti terület... lépcsős függvény esetén! És most képzeljük el, hogy egy folytonos, nem szaggatott, girbe-gurba grafikonnal leírható függvényt úgy közelítünk, hogy rendkívül kis szakaszokra osztjuk az időt, és ebben a kis szakaszokban állandó sebességet feltételezünk. Két dolgot teszünk:

1.Lefedtük nagyon vékony, a függvény értékéhez nagyon illeszkedő magasságú oszlopos téglalapokkal a függvény alatti területet.

2.És ezt a lefedést minél inkább finomítjuk, azaz még inkább felosztjuk az idő intervallumát, érezzük annál közelebb állunk a valósághoz.

----> EZ PEDIG MAGA A MATEMATIKAILAG DEFINIÁLT TERÜLETMÉRÉS módszertana.

2023. dec. 30. 20:59
Hasznos számodra ez a válasz?
 3/10 steven95 ***** válasza:
29%
(lépcsős grafikon lett volna, de a soreleji szóközt törölte, meg nem is ekvidisztánsak a karakterek, bocsi, de remélem érthető)
2023. dec. 30. 21:02
Hasznos számodra ez a válasz?
 4/10 anonim ***** válasza:
29%

#3, nem, ez nem a területmérés. Ez a Riemann-integrálás definiálása. Ami az integrálfogalmak közül a legdefektesebb, elég a Dirichlet-függvényre gondolni, ami nem Riemann-integrálható, holott minden épeszű ember azt várná tőle, hogy az integrálja 0 legyen. Ez a Lebesgue-integrállal meg is valósítható, de még vannak Lebesgue szerint nem mérhető halmazok is, lásd pl. Vitali-halmaz.


Ami a klasszikus területmérést illeti, ott a Jordan-mérhetőség a legfontosabb dolog, ami nem azonos a Riemann-integrállal, ami a picit észszerűbb területmérést illeti, ott mértékelméleti megközelítésben a Borel-mérhetőség kerül elő. (Megjegyzés: a Jordan-mérték NEM mérték, mert nem csak véges szubadditivitása van neki. Illetve még a Jordan-mérték és a Lebesgue-mérhetőség összekapcsolhatódik: egy halmaz R^n-ben pontosan akkor Jordan-mérhető, ha határa Lebesgue-mérhető és mértéke 0. Tehát amiről írsz, az az integrálfogalom egy felépítése, NEM a geometriai területfogalomé, és NEM a mérhetőségé. A mértékelméletből lehet levezetni a függvények integrálhatóságát és a geometriai mérhetőséget, és nem fordítva.

2023. dec. 30. 21:11
Hasznos számodra ez a válasz?
 5/10 anonim ***** válasza:
29%

a Jordan-mérték NEM mérték, mert csak véges szubadditivitása van neki*, bocsánat.


#1 voltam.

2023. dec. 30. 21:12
Hasznos számodra ez a válasz?
 6/10 steven95 ***** válasza:
68%

#4 valószínűleg... nem egy egyetemista tette fel a kérdést. A válaszomat ahhoz igazítottam és e tekintetben megengedtem a pontatlanságot. A kérdező pont nem érthet belőle semmit amit írtál.


Köszönöm a "helyreigazítást", ennyit még tudok én is, nagy örömömre :), bár többnyire csak autodidakta módon, úgyhogy lehet jobban tudod.


" holott minden épeszű ember azt várná tőle, hogy az integrálja 0 legyen"

Én inkább azt mondanám, hogy épeszű ember rájön, hogy talán tisztázni kéne mi a terület és meg kéne beszélni hogyan mérjük.


Hátha annyiban segített a hozzászólásod hogy ezekre a szavakra rákereshet az aki érdekel a téma.

2023. dec. 30. 22:22
Hasznos számodra ez a válasz?
 7/10 krwkco ***** válasza:
88%

"Hogyan kell levezetni ezt az osszefuggest? (v = vo + at)"

Általános iskolai szinten megfogalmazva az egyenletes gyorsulást így definiáljuk: a=(v-v0)/t.

Átrendezve megkapod a kérdésben szereplő egyenletet.


A négyzetes úttörvény

v=(s-s0)/t (Ez a sebesség definíciója állandó sebesség esetén.)

Átrendezve: s=s0+v*t=s0+(v0+at)*t=s0+v0*t+a*t^2

2023. dec. 30. 23:56
Hasznos számodra ez a válasz?
 8/10 krwkco ***** válasza:
61%

Az egyenletes gyorsulással megtett út számításánál van egy hiba: nem az elért legnagyobb sebességgel, hanem a (v0+(v0+at))/2 átlagsebességgel kell számolni.

s=s0+v*t=s0+((v0+(v0+at))/2)*t=s0+v0*t+(1/2)*a*t^2

2023. dec. 31. 02:37
Hasznos számodra ez a válasz?
 9/10 anonim ***** válasza:
77%

Az nagyszerű, hogy előbb kitaláljuk a felsőbb matematikát, majd abból levezetjük a triviális megfigyelést.

Mert ugye a v a sebesség egy adott t időpillanatban, , a v0 pedig a kezdeti sebesség. Az meg nyilvánvaló, ha egy test "a" egyenletes gyorsulással mozog t ideig, akkor a sebessége pontosan v = v0 + a*t lesz.

Innen indulva bonyolíthatjuk a dolgot, például mi van, ha nem állandó a gyorsulás, meg egyáltalán, mi van, ha általánosan akarunk egy problémát kezelni, nem pedig a legegyszerűbb speciális esetként. Igen, innen eljuthatunk az integrálfogalomhoz is sok lépésben (és jó sok idő alatt, volt az pár ezer év is), aztán kiderül, hogy az bizony jó, mert tartalmazza a kiinduló speciális esetünket is.


Ha van egy atombombánk, nem érdemes egy légyre vesztegetni, csapjuk agyon azt a legyet csak úgy szimplán.

2023. dec. 31. 11:29
Hasznos számodra ez a válasz?
 10/10 steven95 ***** válasza:
#8 az átlagsebesség "kikerüli" a grafikon alatti terület meghatározását, de eredetileg abból lett levezetve az átlagsebesség képlete ...hogy kötözködjünk még egy kicsit ;)
2023. dec. 31. 11:57
Hasznos számodra ez a válasz?

Kapcsolódó kérdések:




Minden jog fenntartva © 2024, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu

A weboldalon megjelenő anyagok nem minősülnek szerkesztői tartalomnak, előzetes ellenőrzésen nem esnek át, az üzemeltető véleményét nem tükrözik.
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!