Hányadosfüggvény integráltja? Létezik olyan egyáltalán?
Figyelt kérdés
Integrálási szabályokat keresek és azt tudom h a hányadosfüggvénynek deriváltja van. Integráltja nincs?2011. jan. 9. 15:23
1/8 anonim ![*](//static.gyakorikerdesek.hu/p/vsz2.png)
![*](//static.gyakorikerdesek.hu/p/vsz2.png)
![*](//static.gyakorikerdesek.hu/p/vsz2.png)
![*](//static.gyakorikerdesek.hu/p/vsz0.png)
válasza:
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz0.png)
![*](http://static.gyakorikerdesek.hu/p/vsz0.png)
2/8 anonim ![*](//static.gyakorikerdesek.hu/p/vsz2.png)
![*](//static.gyakorikerdesek.hu/p/vsz2.png)
![*](//static.gyakorikerdesek.hu/p/vsz2.png)
![*](//static.gyakorikerdesek.hu/p/vsz2.png)
válasza:
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz0.png)
Segítőkész vagy. Már találkoztunk a programozásnál, ahhoz is baromira értettél. Minek él az ilyen?
Hányadosfüggvény? Az mi?
3/8 anonim ![*](//static.gyakorikerdesek.hu/p/vsz2.png)
![*](//static.gyakorikerdesek.hu/p/vsz2.png)
![*](//static.gyakorikerdesek.hu/p/vsz2.png)
![*](//static.gyakorikerdesek.hu/p/vsz2.png)
válasza:
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz1.png)
Természetesen létezik, de igazából racionális törtfüggvénynek nevezzük. Az integrálás elvégzéséhez csoportosítani kell, a tipusát. Vannak egyszerűbb tipusok. Ha nem egyszerű, akkor jön a parciális törtekre bontás.
4/8 A kérdező kommentje:
köszi utolsó :D
aztán már rájöttem amúgy. szorzatként integrálom és akkor parciális szabály szerint megyek :)
2011. jan. 9. 19:36
5/8 anonim ![*](//static.gyakorikerdesek.hu/p/vsz2.png)
![*](//static.gyakorikerdesek.hu/p/vsz2.png)
![*](//static.gyakorikerdesek.hu/p/vsz2.png)
![*](//static.gyakorikerdesek.hu/p/vsz2.png)
válasza:
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz1.png)
A hányadost nem tudod szorzatként integrálni.
A hányados és a szorzat nem ugyanaz.
6/8 A kérdező kommentje:
de igen. ha pl a/b van akkor az = a x 1/b
nem mondom biztosra h jó, de az 1ik dián e szerint volt :D
2011. jan. 9. 20:19
7/8 anonim ![*](//static.gyakorikerdesek.hu/p/vsz2.png)
![*](//static.gyakorikerdesek.hu/p/vsz2.png)
![*](//static.gyakorikerdesek.hu/p/vsz2.png)
![*](//static.gyakorikerdesek.hu/p/vsz2.png)
válasza:
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz1.png)
a/b integrálja akkor ax/b, ha a és b konstansok.
Hányadosfüggvény pl:
2x^2/((x^4)-1)
vagyis az f(x) függvényünk olyan, hogy: f(x)=p(x)/q(x)
ahol, p(x) egy m-edfoku, q(x) pedig egy n-edfoku polinom.
Szorzat integrálása pedig az, amikor szorzatot integrálunk. pl. lnx-et.
8/8 Calvin Broadus ![*](//static.gyakorikerdesek.hu/p/vsz2.png)
![*](//static.gyakorikerdesek.hu/p/vsz2.png)
![*](//static.gyakorikerdesek.hu/p/vsz2.png)
![*](//static.gyakorikerdesek.hu/p/vsz2.png)
válasza:
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz2.png)
![*](http://static.gyakorikerdesek.hu/p/vsz0.png)
Mindenki roppant okos, csak a kérdésre nem válaszolt senki! Gratulálok, pondrók!
További kérdések:
Minden jog fenntartva © 2025, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu
A weboldalon megjelenő anyagok nem minősülnek szerkesztői tartalomnak, előzetes ellenőrzésen nem esnek át, az üzemeltető véleményét nem tükrözik.
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!