Kezdőoldal » Közoktatás, tanfolyamok » Házifeladat kérdések » Hányféleképpen lehet sorbarend...

Hányféleképpen lehet sorbarendezni?

Figyelt kérdés

1 krimirajongonak 3 doboz filme van. Az egyes dobozokban 3-4-5 db film található. A dobozokra rá van irva pontosan melyik filmeket tartalmazzák.

A filmeket kiveszi a dobozból, a dobozt leveszi a polcról.

Amikor visszateszi a filmeket a dobozba, majd azokat a polcra, hámyféleképpen állhatnak a filmek a polcon, ha ugy teszi vissza a filmeket, hogy semelyik film sem kerül a saját dobozába?

A dobozok sorrendjét igen, a dobozokban a filmek sorrendjét nem vesszük figyelembe



2018. szept. 28. 08:46
 1/4 anonim ***** válasza:

Elsőre bonyolultnak tűnik a feladat, de valójában nagyon egyszerű; arra kell először rájönni, hogy ha a filmek között egyáltalán nem teszünk különbséget, akkor minden felállás kialakítható úgy, hogy minden filmet csak egyszer mozgatunk úgy, hogy két film helyet cserél egymással (vagy másképp; az 111222233333 számból az összes lehetséges 12-jegyű szám kirakható úgy, hogy páronként helyet cserélnek a számjegyek). Már csak az a kérdés, hogy ezt hogyan tudjuk elérni. Ha csak az első vagy a harmadik dobozra koncentrálunk (tehát addig cserélgetünk, amíg valamelyikből el nem fogynak a saját filmjei), akkor mindig problémába fogunk ütközni, mivel a 2-es dobozban lévők közül lesz olyan, amelyik nem tud kivel helyet cserélni, ellenben ha a 2-es dobozra fókuszálunk, akkor már eredményt tudunk elérni, szerencsére itt is csak egyféleképpen kivitelezhető; a második dobozból az elsőbe 1 filmet, a harmadikba 3 filmet rakunk, ekkor az első és a harmadik dobozban marad 2-2 film, amik helyet tudnak egymással cserélni, ezzel megkapjuk a következő felállást:


233 1133 11222


Innen már a befejezés inkább rutinfeladat, úgyhogy azt meghagyom neked. Ha mégsem menne, szólj, és segítek abban is.

2018. szept. 28. 09:51
Hasznos számodra ez a válasz?
 2/4 A kérdező kommentje:
Koszi meg van
2018. szept. 28. 10:47
 3/4 anonim ***** válasza:
100%

Korrigálnám magamat egy kicsit;


"az 111222233333 számból az összes lehetséges 12-jegyű szám kirakható úgy, hogy páronként helyet cserélnek a számjegyek"


Ez a része nem igaz, mivel például a 333331112222 nem rakható ki ilyen módon. A feladat megoldásához viszont jó ugródeszka ez a gondolatmenet, és tényleg könnyen belátható vele, hogy másik elrendezés nincs.


A végső számsort pedig elírtam, helyesen:


233 1333 11222

2018. szept. 28. 13:57
Hasznos számodra ez a válasz?
 4/4 A kérdező kommentje:

Igen, megfejtettem ezeket én is, a gondolat jó volt, kijött a helyes megoldás, köszönöm :)


Viszont még mindig nem értem mit hibáztam el a saját, korábbi számolásomnál


én a következőt csináltam


Felsoroltam a 3 lehetőséget:

(1) 223 3333 11122

(2) 233 3331 11222

(3) 333 3311 12222

ezekből pedig egyértelműen következik a többi doboz kitöltése.


Ez alapján a valószínűség:

(1) az első dobozba a 4db 2-esből kiválasztok 2db-ot, 5db 3-asből 1db-ot, és ugyanigy folytatva: (4C2)*(5C1)*(4C4)*(3C3)*(2C2)


Ugyanez (2)-re és (3)-ra

Majd ezeket összeadva és szorozva 3! rossz eredményt kaptam


(De a kiválasztás helyett ismétléses permutációval kellett csinálni. Ezt nem értem, hogy miben más a kettő?)

2018. szept. 28. 19:30

Kapcsolódó kérdések:




Minden jog fenntartva © 2025, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu

A weboldalon megjelenő anyagok nem minősülnek szerkesztői tartalomnak, előzetes ellenőrzésen nem esnek át, az üzemeltető véleményét nem tükrözik.
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!