Hogy kell az ilyesmi példákat megoldani?
Sokat gondolkoztam rajta, oldalakat teleírtam, de nem jött ki a megoldás. A dogám egyes lett belőle, mivel nem értettem, de én érteni szeretném, hogy legalább javítani, megpróbálhassak.
Kaphatok majd a válaszokhoz magyarázatot is? :)
Előre is köszönöm a válaszokat! :D
A példák:
Egy tört számlálója 5-tel kisebb, mint a nevezője. Ha a tört számlálójához 17-et, a nevezőjéhez 2-t adunk, akkor a tört reciprokát kapjuk. Melyik ez a tört?
Megoldása: 7/12
Ha egy számból kivonunk 5-öt, és a különbségét négyzetre emeljük, akkor 50-nel kapunk kevesebbet, mintha a számot először négyzetre emeljük, és utána vonunk ki belőle 5-öt. Melyik ez a szám?
Megoldása: 8
Egy négyjegyű szám utolsó jegye 7. Ha ezt a végéről töröljük, és a többi számjegy elé írjuk, akkor az eredeti számnál 2826-tal nagyobb számot kapunk. Melyik ez a szám?
Megoldása: 4637
Ezeket egyenlettel kellene megoldani, és azt kiszámolni kitudom, de felírni már nem, egy ilyen példából.
1;
eredeti tört: (x-5)/x
(x-5+17)/(x+2)=x/(x-5) (mert ez az eredeti reciproka)
(x+12)/(x+2)=x/(x-5)
(x-5)(x+12)=x(x+12)
x=12 jön ki
A tört 12-5/12 = 7/12
2; Szám:x
(x-5)²+50=x²-5
x²-10x+25+50=x²-5 x² kiesik
-10x+75=-5
-10x=-80
x=8
3;
Egy négyjegyű szám utolsó jegye 7: ABC7 = A*1000 + B*100 + C*10 + 7
Ha ezt a végéről töröljük, és a többi számjegy elé írjuk, akkor az eredeti számnál 2826-tal nagyobb számot kapunk:
7ABC = 7*1000 + A*100 + B*10 + C
(A*1000 + B*100 + C*10 + 7)*2826 = 7*1000 + A*100 + B*10 + C
Ki tudod most már számolni? Ha nem, szólj.
A válaszokat köszönöm nektek, most már érthetőbb lett. :)
Ment a zöld pacsi. :D
Most látom, hogy nem jön ki. Ezek szerint mindegyik számjegy elé oda kell írni a hetest?:
Egy négyjegyű szám utolsó jegye 7: ABC7 = A*1000 + B*100 + C*10 + 7
Ha ezt a végéről töröljük, és a többi számjegy elé írjuk, akkor az eredeti számnál 2826-tal nagyobb számot kapunk:
7A7B7C = 7*100000 + A*10000 + 7*1000 +B*100 + 7*10 + C
(A*1000 + B*100 + C*10 + 7)*2826 = 7*100000 + A*10000 + 7*1000 +B*100 + 7*10 + C)
Akkor így kellene leírni az egyenletet és akkor az eredmény ez lenne: 7A7B7C = 747 673,
de ez akkor sem jó, mert: 4637*2826 = 13 104 162.
egy másik megoldás:
x+7+2826=7000+x/10
Egy négyjegyű szám utolsó jegye 7: ABC7 = A*1000 + B*100 + C*10 + 7
Ha ezt a végéről töröljük, és a többi számjegy elé írjuk, akkor az eredeti számnál 2826-tal nagyobb számot kapunk (az előző esetben elnéztem valamiért, azt hittem, hogy 2826-szor nagyobbat):
7ABC = 7*1000 + A*100 + B*10 + C
(A*1000 + B*100 + C*10 + 7) + 2826 = 7*1000 + A*100 + B*10 + C
A*900 + B*90 + C*9 = 4167
A*100 + B*10 + C = 463 = 4*100 + 6*10 + 3
A megoldás: 4637
Az előző válaszoló döbbentett rá, hogy hol tévedtem.
Kapcsolódó kérdések:
Minden jog fenntartva © 2024, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!