Átment rajtam egy traktor az éjjel:S Lehetek terhes?
Mély nyomokat hagyott bennem:( Pedig anyukám elmondta szépen: "Jajjj kislányom nem kell minden jöttment alá feküdni"
Ez a traktor jött és ment:S Félek terhes leszek:( Előre is köszi a válaszokat!
Legyen a torony magassága H > 0, a lejtőé h (h ∈ [0, H]), valamint a lejtő dőljön az eredeti π/4 szöghöz képest α szöggel a torony felé (α ∈ [–π/4, π/4]). Ilyenkor
v = √(2*g*(H – h)) sebességgel pattan vissza a labda. A
h = g/2*t^2 + vy*t = g/2*t^2 – sin(2*α)*√(2*g*(H – h))*t
egyenlet alapján
t = sin(2*α)*√(2*(H – h)/g) + √(2*(H – h)/g*sin(2*α)^2 + 2*h/g)
idő múlva ér földet
s = vx*t = 2*(H – h)*cos(2*α)*sin(2*α) + √(4*(H – h)^2*sin(2*α)^2*cos(2*α)^2 + 4*h*(H – h)*cos(2*α)^2)
távolságban. Ezt osztva H > 0-val és bevezetve az x = h/H jelölést (x ∈ [0, 1])
s/H = (1 – x)*sin(4*α) + √((4*(1 – x)^2*sin(2*α)^2 + 4*x*(1 – x))*cos(2*α)^2).
Ebben az első tag nyilván kisebb vagy egyenlő, mint 1, akárcsak a második, ugyanis a gyök argumentuma – bevezetve az y = cos(2*α) jelölést (y ∈ [0, 1]) – nem más, mint
(4*(1 – x)^2*(1 – y^2) + 4*x*(1 – x))*y^2,
amiből 1-et kivonva
4*((1 – x)^2*(1 – y^2) + x*(1 – x))*y^2 – 1 = –(2*x*y^2 – 2*y^2 + 1)^2 ≤ 0
adódik, ami nyilvánvalóan igaz minden valós (x, y) párra.
Ezért s/H maximuma 2, amit csak az x = 0 és α = π/8 helyen vehet fel, mivel bármilyen más értékekre az első tag határozottan kisebb, mint 1 (a második pedig továbbra is csak legfeljebb 1).
Kapcsolódó kérdések:
Minden jog fenntartva © 2025, www.gyakorikerdesek.hu
GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Cookie beállítások | WebMinute Kft. | Facebook | Kapcsolat: info(kukac)gyakorikerdesek.hu
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!